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J. Phys. A: Math. Gen. 14 (1981) L413-L416. Printed in Great Britain 

LETTER TO THE EDITOR 

Remark on percolative phase transitions without infinite 
network 

W Klein?$ and D StaufferS 
t IFF, KFA Julich, 5170 Julich 1, West Germany. 
i: Institut fur Theoretische Physik, Universitat, 5000 Koln, West Germany 

Received 20 July 1981 

Abstract. For Ising-correlated site-bond percolation, Delyon, Souillard and Stauffer 
predicted a phase transition in the number of finite droplets, without the appearance of an 
infinite network. We interpret their result as due to percolation of active bonds within very 
large but finite Ising clusters. 

Correlated site-bond percolation has often been studied in recent years (Coniglio et a1 
1979, Coniglio and Klein 1980, Delyon et a1 1981, Stauffer 1981, Roussenq 1981, 
Ottavi 1981, Chakrabarti et a1 1981, Stanley 1981), in particular for the case of Ising 
correlation. Then lattice sites are occupied or empty as in the pure lattice gas (Ising 
model) in thermal equilibrium. Between two occupied sites which are nearest neigh- 
bours, bonds are defined as being active with probability pB and passive with probability 
1-pB, where pB can be regarded as a variable independent of temperature and 
“magnetisation” (or field). A cluster is a group of occupied neighbour sites; for pB < 1 
each such cluster can split up into several smaller ‘droplets’ which are defined as groups 
of occupied neighbour sites connected by active bonds, whereas clusters can also be 
held together by passive bonds. 

For this model, Delyon et a1 (1981) suggested a phase transition in the droplet 
numbers n, without appearance of an infinite network of active bonds. Let ns be the 
average number of droplets (per lattice site) containing s occupied sites each; and let [ 
be defined by: 

log n, cc -sg (s -* a). (1). 
For temperatures below the critical temperature T, of phase separation, Delyon et a1 
(1981) predict, on the coexistence curve, that [ changes from 1 forp C ~ B ,  to 1 - l / d  for 
p > pBo where the phase transition point pBc depends on magnetisation M, and d is the 
dimensionality. This result holds for liquid droplets in both the liquid phase (positive 
M, point A in our figure) and the vapour phase (negative M, point B in our figure). 
Presumably one has pB,(-M) =pBc(+M) ,  as suggested by Delyon et a1 (1981). But 
whereas at point A, i.e. for large liquid droplets in the liquid phase, an infinitely large 
droplet starts to appear, no such percolation of droplets is possible at point B where all 
droplets remain finite. The present note suggests a simple explanation for this effect. 

8 Present and permanent address: Center for Polymer Studies and Physics Dept., Boston University, Boston 
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Figure 1. Schematic phase diagram for simple cubic lattice: bond activation probability pB 
versus magnetisation M for Ising-correlated site-bond percolation; after Delyon et a1 
(1981). In the shadowed region, an infinite droplet percolates throughout the system; above 
the broken phase transition curve of Delyon et al, droplets percolate throughout the very 
large but finite Ising clusters. Points A, B and C are located on these transition lines. 

(Stanley (1981) compared the phase transition of Delyon eta1 1981 with that predicted 
by Griffiths (1969) for quenched dilute ferromagnets. Our explanation does not 
necessarily contradict that analogy.) (See also Aizenman et a1 1980.) 

Very large but finite clusters (radius >> correlation length) have been studied 
numerically in detail for random percolation (Stauffer 1979 and 1981). Above' the 
percolation threshold, their internal structure is the same as that of the infinite network. 
Much earlier (Binder and Stauffer 1972), large but finite clusters were studied on the 
coexistence curve for the Ising model; for temperatures T far below T,, the internal 
structure of these 'raindrops in the vapour phase' is the same as that of the bulk liquid 
phase with which they may coexist. For correlated site-bond percolation below T, in 
the vapour phase, the active and passive bonds are distributed randomly within the Ising 
clusters; these cluster sites thus have the same density and correlation as the numerous 
occupied sites on the bulk liquid side, provided the cluster to which they belong is much 
larger than the Ising correlation length. 

On the liquid side, point A in our figure, the active bonds within the bulk liquid 
phase just start to percolate throughout the sample. On the vapour side, point B in our 
figure, the active bonds just start to percolate throughout the very large (and very rare) 
clusters of occupied sites. They cannot percolate through the whole sample since no 
infinite cluster exists; but for droplet sizes s much smaller than the cluster size I, these 
droplets will not feel this limitation and will behave at point B as if they were in the 
symmetric liquid phase at pcint B. Therefore the number n, of finite large droplets in an 
extremely large Ising cluster will be the same at point A as in a bulk liquid sample of the 
same size at point B. In this way we propose an explanation for the suggested phase 
transition of Delyon et a1 (1981). The numbers of finite clusters near point B feel t he  
singularity of point A. 

More quantitatively, let n? be the number of droplets (per lattice site) of size s 
within the infinite cluster (point A) or within the interior of an extremely large cluster 
(point B); if the number of sites in that cluster, 1, is much larger than the number of sites 
in the droplet, s, we expect nfroP to be independent of 1. By definition, 15 s ; and the 
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radius of the s-droplet is also much larger than the correlation length. On the liquid 
side, at point A, the majority of occupied sites belong to the infinite Ising cluster, and 
thus 

@a) 

If we go closer to the endpoint of the phase transition line at pB = 1, i.e. if we are near 
point C, only a small fraction P ,  of occupied sites belongs to the infinite cluster, and 
equation (2a) is generalised to 

(26) 
(We neglect in (2) the contribution from finite clusters and also trivial factors like the 
concentration (1 + M ) / 2  of up-spins.). 

On the vapour side, point A, within one extremely large cluster of size I ,  we have 
, smaller (but still very large) droplets. If we have NI = Nl(M) such clusters (per 

drop n ,=n ,  . 

drop n,=P,n, . 

1 drop 

lattice site) on the coexistence curve, they contain altogether 

n, = 11 INLn? (3) 

droplets, where the sum runs from s to infinity. What is happening close to the phase 
transition p B  = pBc? 

In three dimensions, for pB slightly above pBc we expect 

(4a 1 p S 2 / 3  2 / 3  -exp[-cl(pB-pBc) s 1 ;rap 
whereas for PB slightly below pBc 

ntrop - exp[-c2(pBc-pB)PSs] (46) 

apart from pre-exponential factors which are less important for large s. (The ci depend 
on M ;  p and S are the critical exponents of random percolation, and we used the scaling 
law for random percolation (Stauffer 1979).) At point B, where no infinite Ising cluster 
is present, presumably (Muller-Krumbhaar 1979) the numbers Nl of Ising clusters 
decay as 

N/ - exp(-c3P3). (4c) 

(For magnetisations larger than about -0.6, but still negative, another exponential 
decay might hold.) 

Combining equations (3) and (4) we get, apart from pre-exponential factors, for 
large s at A: 

ns - e ~ p ( - c 3 s ~ / ~ ) n ~ ~ ~ ~  ( 5 )  
or 

-log[ns (PB > PBc)] == [c3 + c1 (PB - PBc) Ps2/3]s2/3 ( 6 a )  

-log[ns(pB<pBc)l LI C3s2/3+C2(PBc-pB)PSS. (66) 

(Note IpB -pBClPss >> 1 in both cases.) It will be difficult to test these predictions by direct 
Monte Carlo simulation of n,, since due to the factor e x p ( - ~ ~ s ~ / ~ )  the numbers ns are 
always extremely small. Moreover this factor ensures, as observed by Roussenq (1981), 
that the second moment of the droplet size distribution always remains finite; a change 
is seen only in the asymptotic decay of the droplet numbers (‘essential singularity’). 

In conclusion, we have explained the transition of Delyon et a1 (1981) by the 
percolation of active bonds within the extremely large but finite Ising clusters in the 
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vapour phase. Since these clusters are very rare, they hardly affect easily measurable 
quantities. Monte Carlo simulations in restricted ensembles, like the study of large 
king clusters at fixed size 1 (Binder and Stauffer 1972, Binder and Kalos 1980), might 
test the present assertions at least qualitatively, whereas a quantitative test of our 
predictions for droplets numbers, equations (6a, b )  will be much more difficult. 

We thank A Coniglio, J Roussenq and H E Stanley for discussions. One of us (WK) 
thanks the Institute of Theoretical Physics at Cologne University for the hospitality 
extended to him; partial support came from SFB 125 Aachen-Julich-Koln. 
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